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Abstract

Context: The focus of clinical understanding and management of male storage

lower urinary tract symptoms (LUTS) has shifted from the prostate to the bladder.

This is mirrored by an increasing body of experimental evidence suggesting that

the bladder is the central organ in the pathogenesis of LUTS.

Objective: A systematic review of the literature available on pathophysiologic

aspects of storage LUTS.

Evidence acquisition: Medline was searched for the period ending December 2008

for studies on human and animal tissue exploring possible functional and struc-

tural alterations underlying bladder dysfunction. Further studies were chosen on

the basis of manual searches of reference lists and review papers.

Evidence synthesis: Numerous recent publications on LUTS pathophysiology were

identified. They were grouped into studies exploring abnormalities on urothelial/

suburothelial, muscular, or central levels.

Conclusions: Studies revealed both structural and functional alterations in bladders

from patients with LUTS symptoms or animals with experimentally induced bladder

dysfunction. In particular, the urothelium and the suburothelial space, containing

afferent nerve fibres and interstitial cells, have been found to form a functional unit

that is essential in the process of bladder function. Various imbalances within this

suburothelial complex have been identified as significant contributors to the gen-

eration of storage LUTS, along with potential abnormalities of central function.
soc
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1. Introduction

In 2009, we now recognise that lower urinary tract

symptoms (LUTS) do not reliably reflect the underlying

vesicourethral pathology; hence, the bladder is sometimes

referred to as an ‘‘unreliable witness.’’ The term LUTS

encompasses three groups of symptoms: voiding (slow

stream, splitting or spraying, intermittency, hesitancy,

straining, terminal dribble), postmicturition (sensation of

incomplete emptying, postmicturition dribble), and sto-

rage. These symptoms are often described by the term

overactive bladder (OAB): urinary frequency, nocturia,

urgency, and urgency urinary incontinence [1].

Voiding symptoms have been reported to be the most

common LUTS in men. However, women also commonly

present with voiding symptoms [2,3].

Likewise, storage symptoms are not sex specific but

increase in an age-related fashion and are prevalent in both

male and female patients. Indeed, there is a similar

distribution of both storage and voiding symptoms [4].

This paradigm shift in our clinical understanding and

evaluation of LUTS [5–7] is mirrored by an increasing body

of experimental evidence suggesting that the bladder has

to be considered the central organ in the pathogenesis of

LUTS.

2. Evidence acquisition

Medline was searched using the terms overactive bladder,

detrusor overactivity, lower urinary tract symptoms, patho-

physiology, and ageing bladder for dates up to December 2008.

Further studies were chosen on the basis of manual searches

of reference lists and review papers and from meetings of the

International Continence Society, the European Association

of Urology, and the American Urological Association. This

approach was chosen because previous work has shown that

manual search improves the database search.

3. Evidence synthesis

Whereas voiding symptoms are only poorly correlated

with bladder outlet obstruction (BOO), storage symptoms

have a closer association with underlying detrusor over-

activity (DO) [5]. To date, three theories, each of which

probably contributes in varying proportion to the complex

mechanisms underlying the genesis of DO and the

associated storage symptoms composing OAB, have been

put forward:

� The urothelium-based hypothesis: Changes in urothelial

receptor function and neurotransmitter release as well as

in the sensitivity and coupling of the suburothelial

interstitial cell network lead to enhancement of invo-

luntary contractions [8].

� The myogenic hypothesis: Changes to the excitability and

coupling of smooth muscle cells with other myocytes or

interstitial cells lead to the generation of uninhibited

contractions [9,10].
� The neurogenic hypothesis: Reduced peripheral or central

inhibition increases activation of the micturition reflex

and involuntary bladder contractions [11]. Peripherally,

neurologic diseases might cause a sensitisation of C fibres

that are silent under normal circumstances, thereby

leading to the emergence of a C-fibre-mediated reflex.

This paper provides an overview of the contemporary

evidence base on the structural and functional changes in

the bladder of patients suffering from storage LUTS.

3.1. Changes on the urothelial and suburothelial level

In contrast to the classical view of the urothelium as merely

a passive barrier to ions and solutes, the urothelium has

increasingly been recognised to have an important secre-

tory function that allows it to undertake a neuromodulatory

role. In support of this, both the urothelial metabolic rate

and receptor density are higher than that of the detrusor

[12]. The urothelium interacts closely with the underlying

suburothelial layer, in particular the interstitial cell net-

work contained within it, so that the whole structure can be

regarded as a functional unit [8]. The urothelium is

composed of three sublayers: a basal layer attached to

the basement membrane, an intermediate layer, and an

apical layer of large hexagonal cells referred to as umbrella

cells. The suburothelium is an area composed of nerves,

blood vessels, and connective tissue in intimate contact

with the urothelium.

3.1.1. Urothelial sensory functions and changes in disease

Histologic studies have shown that urothelial cells them-

selves express sensory receptors typically found on primary

afferent nerves. One example is the transient receptor

potential cation channel subfamily vanilloid member 1

(TRPV1) [13,14]. TRPV1, a sensory receptor widely dis-

tributed throughout the body, is activated by heat and

protons. Liu et al reported that urgency is associated with

increased TRPV1 expression in the human bladder trigonal

mucosa [15]. Several studies on TRPV1-null mice suggest a

role for TRPV1 receptors both in inflammatory conditions

[16] and during normal voiding function [17,18]. Bladder

biopsies from patients with both idiopathic detrusor

overactivity (IDO) [19] and neurogenic detrusor over-

activity (NDO) [20] showed increased urothelial TRPV1

expression. The agents capsaicin and resiniferatoxin act on

vanilloid receptors, thereby producing epithelial desensi-

tisation by turning them less reactive to natural stimuli as

well as neural degranulation and damage [21,22]. They have

been shown to reduce urgency and bladder pain [23] along

with urothelial TRPV1 immunoreactivity. Whether or not

TRPV4, another member of the TRP receptor family that is

expressed by the urothelium and has been shown to be

involved in normal voiding behaviour, has a role in bladder

dysfunction remains to be elucidated [24,25].

Both P2X and P2Y purinergic receptor subtypes have

been identified in the bladder urothelium. It is now thought

that these may respond to urothelial-derived adenosine

triphosphate (ATP) release in autocrine and paracrine
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signalling [26–31]. In patients with IDO and NDO as well as

in patients with the bladder pain syndrome (BPS; painful

bladder syndrome, interstitial cystitis), higher levels of

urothelial P2X2 and P2X3 receptors have been detected

[32,33]. After successful treatment, a reduced immuno-

reactivity correlated well with a reduction in urgency [34].

Auto- and paracrine mechanisms might further potentiate

the enhancement of ATP release from uroepithelial cells in

patients with chronic bladder disease. Interestingly, cats

with a similar disease process (feline interstitial cystitis

[FIC]) showed a downregulation of urothelial P2X and

P2Y receptors [35]. However, Kim et al [36] reported a

significant increase in P2X3 receptor expression within the

mucosa but not smooth muscle of rats with DO secondary to

BOO. Cannabinoid CB 1 receptors have been found in the

bladder urothelium. They were shown to be coexpressed

with P2X3 receptors in rodents, monkeys, and humans,

supporting the hypothesis of an interaction between the

cannabinoid and the purinergic systems in the transduction

of sensory information in the urinary bladder. Further, the

reduction of nerve activity induced by cannabinoid-receptor

activation implicates CB 1 receptors in the peripheral

modulation of bladder afferent information [37–39].

Urothelial cells express both a and b adrenoceptor

subtypes, stimulation of which has been shown to trigger

the release of ATP and nitric oxide (NO) [40–42].

Catecholamines could be released from nerves adjacent

to the urothelium; however, neither a role for catechola-

mines nor an altered adrenoceptor profile has yet been

shown in pathologic conditions.

The presence and localisation of muscarinic receptor

protein and mRNA in the human [43–48] and mouse [49]

urothelium have been studied. All five muscarinic subtypes

are expressed throughout the urothelial layers with a

specific localisation of the M2 subtype to the umbrella cells

and M1 to the basal layer, with M3 receptors more generally

distributed. At therapeutic doses, antimuscarinics act

mainly during the filling phase and exert little effect on

detrusor contraction during emptying [50–52]. This lends

support to the suggestion that urothelial M receptors might

be involved in the generation of afferent impulses. Indeed,

in a rat model with DO induced by BOO, immunoreactivity

of M2 and M3 muscarinic receptors was greater in the

urothelium of the BOO group than in the control group [36].

Accordingly, in a preclinical study in rats, detrusor over-

activity was attenuated by intravesical instillation of

antimuscarinic agents [53–55]. In contrast, a human study

showed that M3 but not M2 muscarinic receptor mRNA

expression was significantly less in urothelium from

patients with IDO than from age-matched controls [56].

In cultured urothelial cells, blockade of urothelial muscari-

nic receptors with atropine inhibited stretch-induced ATP

release [57], so it has been proposed that stretch-released

acetylcholine (ACh) may act in a feedback mechanism to

induce basolateral ATP release.

3.1.2. Urothelial secretory functions and changes in disease

ATP was the first neurotransmitter demonstrated to be

released directly from the urothelium [58]. Basolateral,
nonvesicular ATP release [26,27,59–61] is evoked by

chemical stimuli or by stretch proportional to the extent

of bladder distension. By acting on structures such as nerves

[62] and interstitial cells in the suburothelial space, it is

thought to trigger the underlying afferent signalling bladder

fullness and pain and possibly even to activate the

micturition reflex [63]. It might also operate in an autocrine

manner to enhance its own release from urothelial cells, a

mechanism that has been suggested to be involved in the

genesis of chronic bladder diseases [64]. A significant

increase of urothelially released ATP has been reported from

patients with painful bladder syndrome [64–67] or spinal

cord injured rats [68] as well as from cats with FIC [57] and

rats with chronic bladder inflammation [69]. Pathologically

increased amounts of urothelially released ATP can be

reduced on treatment with botulinum toxin [70]. Notably,

ATP can potentiate the response to vanilloid stimulation by

lowering the threshold for protons, capsaicin, and heat [71].

In turn, urothelial ATP release is elicited by stimulation of

TRPV1 [18] and muscarinic and adrenergic receptors on

urothelial cells [72].

The presence of several NO synthase isoforms (neuronal,

endothelial, and inducible) within the urothelium

[40,41,73] suggest that NO has a role in the control of

bladder activity, presumably by inhibiting the activity of

bladder afferent nerves. In support of that view, intravesical

oxyhaemoglobin, a NO scavenger, results in bladder

hyperactivity [74], and, consistently, intravesical applica-

tion of NO donors suppresses bladder overactivity in

animals treated with cyclophosphamide [75,76]. Further,

there is a significant increase in baseline NO production in

bladder urothelial strips in cats with FIC compared with that

in healthy cats [77]. A study with 15 patients diagnosed

with ‘‘classical interstitial cystitis’’ showed a statistically

significant correlation between successful medical treat-

ment and changes in luminal bladder NO concentration

[78]. The release of NO from the urothelium is facilitated by

cholinergic, adrenergic, and TRPV1 receptor stimulation

[40,41].

Urothelial cells have further been shown to express ACh-

synthesising enzymes such as choline acetyltransferase that

release ACh following both mechanical and chemical

stimulation through a nonvesicular mechanism, mediated

by organic cation transporter type 3 [45,49,79,80]. It is

known that the release of nonneuronal ACh increases with

age, detrusor stretch, and oestrogen status [45,81,82].

Another animal study suggested the presence of a

diffusable, urothelium-derived inhibitory factor, although

it could not be identified [83].

3.1.3. Suburothelial afferent innervation and changes in disease

Immunohistochemistry has shown that many afferent

nerve fibres are located in the lamina propria that label

for receptors to urothelially released factors or contain

sensory neuropeptides substance P (SP) and calcitonin

gene-related peptide (CGRP) [84]. Immunoreactivity is

altered in conditions that result in bladder overactivity

and normalised by agents designed to attenuate the

condition [34,85–87]. The proximity of these afferent
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nerves suggests they could interact with the urothelium to

detect changes in bladder fullness. P2X3 receptors have

been identified as the purinergic receptor subtype on

suburothelial afferents [61,88,89]. The inference is that

P2X3 receptors are involved in sensory activation during the

filling phase, as concluded from studies of P2X3-deficient

mice who exhibited a reduced afferent firing and micturi-

tion reflex [62,89]. TRPV1 receptors on suburothelial

afferents have a role in normal voiding function, as

demonstrated by a decreased afferent activation during

bladder filling in TRPV1-null mice [17]. These receptors also

seem to be an essential component of purinergic signalling

by the urothelium [18]. It is thought that both P2X3 and

TRPV1 receptors on suburothelial afferents play a key role in

the pathogenesis of DO, in particular NDO and, to a lesser

degree, IDO where there is increased TRPV1- and P2X3-

immunoreactive suburothelial innervation compared with

controls [19,20,34]. Both intravesical instillation of resini-

feratoxin [85,90] and intradetrusor injections of botulinum

toxin A [34] in DO patients produced significant improve-

ments in LUTS and urodynamic parameters [91,92]

associated with a marked decrease of TRPV1 and P2X3-

immunoreactive fibres in clinical responders. TRPA1 is also

expressed in C fibres and can be activated by hydrogen

sulphide that is formed during infection: Activation results

in bladder overactivity [93–95].

3.1.4. Suburothelial interstitial cell network and changes in disease

A network of interstitial cells in the lamina propria forms a

functional syncytium through extensive connexin 43

(Cx43) gap junction coupling. It is postulated that either

protons or local release of ATP from the urothelium

generate depolarising Ca2+ waves that spread across the

interstitial cell network. Furthermore, these interstitial cells

are able to integrate focal signals from different regions of

the bladder wall [96–100], in view of their close proximity

to unmyelinated afferent nerves and the fact that their own

activity is modulated by exogenous ATP (via P2Y receptors)

and low pH [101–104].

Muscarinic M2 and M3 receptor labelling localised to

suburothelial interstitial cells is increased in samples from

idiopathic overactive bladders. An increase in M2 receptor

labelling is seen in samples from patients with BPS [46].

However, isolated interstitial cells do not respond to

exogenous muscarinic receptor agonists by a rise of

intracellular Ca2+, so the intracellular signalling mechan-

isms remain unknown [99]. Modulating the coupling

strength between the cells would influence the intensity

and/or travel distance of the signal within the syncytium,

and consequently the number of afferent fibres stimulated.

An animal study [105] in 2007 that established a link

between increased gap junction expression in lamina

propria interstitial cells and detrusor overactivity found

three times higher suburothelial Cx43 immunoreactivity in

rats with detrusor overactivity following spinal cord

transsection. Gap junction blockade reduced spontaneity,

and it was concluded that spontaneous activity in the

bladder requires gap junction upregulation in lamina

propria interstitial cells. In a very recent study of >20
patients with NDO and IDO, increased gap junction

formation in the suburothelial interstitial cell layer has

been demonstrated compared with controls with no DO

[106]. It was hypothesised that this change could have a

significant role in the pathogenesis of the detrusor

abnormality.

3.2. Changes at the muscular level

In the normal (stable) human bladder, ACh is the only

neurotransmitter evoking contractions, whereas DO has

been shown to be associated with atropine resistance, with

ATP proposed as the principal additional activator [107–

109]. One report has demonstrated a significant positive

correlation of purinergic, and negative correlation of

cholinergic, neurotransmission with age [110]. P2X1 has

been described as the purinergic receptor subtype present

on human detrusor [29], although a very recent study infers

a different route of purinergic activation [111]. However,

the appearance of purinergic activity in the overactive

bladder is not paralleled by major differences in P2X1

immunoreactivity in smooth muscle [112]. Rather, P2X1

receptor expression in human detrusor seems to be

downregulated with age and overactivity [113], presum-

ably to offset the increased amounts of neurally released

ATP [110], although this is not a consistent observation

[112]. The greater availability of ATP at the neuromuscular

junction might be a result of a less effective breakdown in

DO: Ectonucleotidase activity is decreased in detrusor

samples from DO bladders [114], and pretreatment with the

nonspecific ATPase apyrase reduces the strength of nerve-

mediated contractions of muscle preparations from those

bladders [115]. Moreover, the potency of the nonhydroly-

sable ATP analogue a, b-methylene ATP, which acts as an

antagonist on purinergic receptors to elicit increases of

intracellular Ca2+, was not different in cells from stable and

overactive human bladders [116].

In the normal detrusor, M2 receptors predominate over

the M3 subtype, and the latter mediates at least 95% of

contractile activation [44]. This has raised the question as

to whether M2 receptors exert a more significant role in

pathologic conditions (eg, in DO). In the rat model,

hypertrophied as well as denervated—spontaneously

active—bladders showed a shift in the muscarinic receptor

subtype from M3 toward M2 [117] with different signal

transduction mechanisms mediating the contractile

response [118]. It was concluded that the M2 receptor

subtype can take over a contractile role when the M3

subtype becomes inactivated by, for example, denervation

or bladder hypertrophy [119], although this finding is not

universal [120]. One possibility for this discrepancy is that

M2-dependent actions may derive from the urothelium

[121,122], and this pathway becomes more significant in

these pathologic conditions.

Prostaglandins are suggested to be involved in the

pathophysiology of different bladder disorders, and

enhanced prostaglandin E2 (PGE2) production has been

reported in patients with DO. Accordingly, nonsteroidal

antiinflammatory cyclooxygenase inhibitors that function
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to reduce PGE2 production have been widely reported to be

effective agents in models of DO. The PGE2 receptors EP3

and EP1 seem to have a role in the development of DO

caused by PGE2. Taken together, these observations suggest

that prostacyclin may have a facilitatory role in the

micturition reflex by modulating the threshold for activa-

tion of capsaicin-sensitive and capsaicin-insensitive blad-

der sensory afferents [123–127].

Spontaneous activity can be recorded from isolated

detrusor muscle strips in the organ bath, and several studies

report an increase in tissue from overactive bladders.

Contractions are resistant to neurotoxins but can be

diminished by calcium channel blockers or potassium

channel openers [128]. Such activity can be recorded in

isolated cells, as spontaneous changes to membrane

potential and intracellular Ca2+, and the incidence of such

activity is enhanced in cells isolated from overactive

bladders (CH Fry, personal communication). Although

upregulated activity may be present in isolated cells, it

does not automatically account for increased spontaneity of

the intact muscle preparation. Unlike other smooth muscle

tissues, human detrusor does not show extensive coupling,

thus presumably allowing the spontaneously active myo-

cytes to adjust their length to volume change without

synchronous activation that would elevate intravesical

pressure. However, because detrusor smooth muscle cells

were discovered to be electrically coupled via gap junctions,

an increase of intercellular coupling has been postulated to

play a role in generating OAB [129]. Gap junctions are

composed of the Cx family of proteins. In human detrusor,

expression of Cx45, the main intermuscular Cx, is actually

less in samples from idiopathically overactive bladders,

which is correlated with a higher gap junction resistance in

such samples [130]. Other studies have suggested that a

different Cx isoform, Cx43, forms gap junctions between

muscle cells and have found the Cx43 expression to be

upregulated in overactive bladders [131–133].

However, Cx43 labels interstitial cells in the detrusor

layer. These cells are characterised by their labelling for the

tyrosine-kinase receptor protein c-kit [134], as are the

suburothelial equivalents, close apposition to muscle

bundles and nerves [101], and the generation of sponta-

neous and carbachol-evoked calcium and electrical activity

[135–138]. It is postulated that rather than initiate

spontaneous activity in the detrusor syncytium, interstitial

cells modulate its activity [139], possibly by coordinating

activity in different muscle bundles. Several recent studies

have suggested an involvement of detrusor interstitial cells

in the generation of storage LUTS associated with DO. Biers

et al [140] found c-kit-positive cells on the boundaries of

muscle bundles in specimens from patients with IDO and

NDO to be four and seven times higher than controls,

respectively. In guinea pigs with bladder overactivity

induced by BOO, Kubota et al [141] demonstrated a four

times higher density of c-kit-positive cells. Several studies

[22,131,132] have shown an overall increase of Cx43

transcript and protein in the overactive and/or obstructed

rat bladder, however, without exact structural localisation.

In support of this, c-kit receptor blockers had inhibitory
effects on guinea pig and overactive human detrusor,

possibly via c-kit receptors on cells resembling bladder

interstitial cells of Cajal [140].

3.3. Altered innervation in neurogenic disorders

Diseases and injuries of the central nervous system that

affect neural control of micturition cause various patterns of

bladder disturbance depending on the neural level affected

(brain, spinal cord, or peripheral nervous system). In cats

with spinal cord lesions and subsequent NDO, it is reported

that DO is due to the emergence of C-fibre reflexes [11]. The

reflex detrusor contractions seen in response to low-

volume filling might result from alterations in the

peripheral afferent receptors due to an increased release

of neurotrophins such as nerve growth factor (NGF) in the

spinal cord or bladder that lead to sensitisation of silent C

fibres [11,142,143]. Moreover, activated C fibres may

release neuropeptides inducing smooth muscle contraction

and immunocompetent cell migration and neurogenic

inflammation. Afferent neurons undergo both morphologic

[144] and physiologic changes [145] following spinal cord

injury. Production of neurotrophic factors increases in the

bladder after spinal cord injury: Chronic intravesical NGF

administration in rats induces bladder hyperactivity [146–

148].

In the bladder, NDO is characterised by an increased

expression of TRPV1 and P2X3 receptors on suburothelial

afferent nerves [20,34,85,90], by an augmented suburothe-

lial immunoreactive for SP- and CGRP-positive nerves [84],

as well as by an intensified electrical coupling of

suburothelial interstitial cells [106]. However, some

[149,150] argue it is unlikely that abnormal DO responses

to bladder filling can be accounted for simply by increased

bladder afferent activity. Functional magnetic resonance

imaging of the brain in subjects with poor bladder control

shows responses that differ from controls. Responses are

relatively small at low bladder volumes (with mild

sensation) but become exaggerated (with strong sensation)

above a certain volume threshold, even when there is no

actual DO. Taken together, either the nature of the afferent

signals or the handling of these signals in the brain is

abnormal.

3.4. Ageing bladder

The increasing prevalence of OAB and urgency urinary

continence in the elderly [2,151,152] is mirrored by clinical

data showing decreased bladder capacity and increased

nonvoiding contractions of the detrusor. However, the

underlying pathophysiology of age-related bladder dys-

function is much less clear. Elbadawi et al could demon-

strate that although the gross morphology remains

unchanged with age, the detrusor is partially denervated

[153], an observation that has also been made in overactive

bladders [9]. However, the contractile machinery appears

intact in the aged bladder. Animal studies have shown that

atherosclerosis-induced chronic ischaemia leads to fibrosis,

smooth muscle atrophy, and noncompliance, possibly by



Fig. 1 – Various central and peripheral pathophysiologies in the development of detrusor overactivity.
LUTS = lower urinary tract symptoms.

E U R O P E A N U R O L O G Y 5 6 ( 2 0 0 9 ) 8 1 0 – 8 2 0 815
increasing transforming growth factor-b1 expression in the

bladder. Further, arterial insufficiency was associated with

DO and increased smooth muscle contractility, and it has

been postulated that ischaemia-induced structural damage

in the urothelium and possible chronic exposure of

the underlying tissue and nerves to the urine may play a

role in this process. These studies suggest that arterial

insufficiency and hypercholesterolemia, common ageing-

associated disorders, may play important roles in the

pathophysiology of voiding dysfunction in the elderly

[154,155]. However, animal studies have not been parti-

cularly helpful due to differences between species and

strains [156]. The limited human data available [110,157]

suggest there are no alterations in muscarinic excitability.

Accordingly, an alteration in the M2/M3 receptor protein

ratio has not been demonstrated [47]. Animal data suggest

that ageing has no major effect on a-1- or b-adrenoceptor

function [156]. Atropine resistance and additional puriner-

gic activation in the unstable aged bladder were discussed

earlier [110]. The overall picture does not suggest major

ageing-related alterations of muscarinic or a1-adrenergic

receptor-mediated contractility or of b-adrenergic relaxa-

tion of the urinary bladder [156]. (Fig. 1).

4. Conclusions

Several recent population-based surveys in Europe and the

United States have clearly demonstrated that storage LUTS

increase with age at a similar rate in both men and women,

with little correlation with underlying disease processes such

as benign prostate enlargement. In support of that view,

numerous recent studies have revealed both structural and
functional alterations in bladders from patients with LUTS

symptoms or animals with experimentally induced bladder

dysfunction. In particular, the urothelium and the subur-

othelial space—containing afferent nerve fibres and inter-

stitial cells—have been found to form a functional unit that is

essential in the process of bladder sensation and charac-

terised by a variety of interrelated neurotransmitter inter-

actions. Various imbalances within this suburothelial

complex have been identified as significant contributors to

the generation of storage LUTS, along with potential

abnormalities of central function. Thus an increasing body

of experimental data supports the importance of focusing on

both bladder function and dysfunction in the management of

LUTS. Current research on the pathophysiology of these

symptoms has revealed a number of peripheral mechanisms

potentially involved [63,158], some of which may be realistic

targets for drugs. However, signals obtained should be

critically analysed, keeping in mind that direct translation

from preclinical models to clinical reality is rarely possible.
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Twenty years ago, the Italian group, chaired by Maggi,

pioneered the role of a specific capsaicin-sensitive subset

of primary sensory nerves in the lower urinary tract [1].

With brilliant intuition, Maggi and colleagues showed that

intravesical instillation of capsaicin—the source of red

pepper’s pungent taste—in six patients with lower urinary

tract symptoms (LUTS) produced a concentration-related

reduction of the first desire to void and of cystometric

bladder capacity. Clinically, the patients reported disap-

pearance or marked attenuation of their symptoms after

repeated instillations, providing the first indication that

afferent nerves were present in the human urinary

bladder. More recent studies have confirmed Maggi’s

theory, and that success is summarized by Roosen and

colleagues in this issue of European Urology [2].

When approaching this article, I think the reader should

know what has been changing in recent years, what has

been the basic science and the clinical rationale for

investigating alternative pathways to cholinergic and

adrenergic regulation of the lower urinary tract, and what

lies ahead. The idea of local afferent modulation by

targeting afferent nerves that control the lower urinary

tract has gained the trust of urologists as a potential

alternative to current drug therapies for LUTS [3]. For

treating overactive bladder, the emerging concept is that it

would be more desirable to prevent the micturition reflex

by blocking the afferent branch instead of blocking the

contraction of detrusor smooth muscle, as it results from

the activation of efferent branch. In the past, many factors,

such as the complex neurology of the voiding reflex; the

simple, uncontroversial idea of antagonistic, parasympa-

thetic cholinergic, and sympathetic adrenergic control of

the lower urinary tract; and the interrelationship between

voluntary somatic and involuntary control of micturition

reflex, discouraged extensive research of a new approach

for the treatment of LUTS. In recent years, neuropharma-

cology has gained advantages from basic science research,

and the experimental results have been translated into

clinical practice. Today we know that the neuromuscular

junction is not a ‘‘fixed synapse junction,’’ with pre- and

postjunctional specialization, and it releases multiple

neurotransmitters such as monoamines, purines, amino

acid, peptides, and nitric oxide. Further achievements

included accepting the principles of cotransmission (axons

release more than one transmitter for each action potential)

and neuromodulation (locally released agents may mod-

ulate the amount of neurotransmitters released prejunc-

tionally) and recognition that a subset of sensory nerves

that are selectively sensitive to capsaicin and its transient

receptor potential (TRP) family are of primary importance

in functional regulation of the lower urinary tract [4].

New varieties of bladder receptors have been identified

as being involved in regulating bladder sensory afferent

nerve conduction [5], but as yet, the story seems far from

over. Members of the TRP family Ca2+ and Na+ permeable

channels involved in promoting cellular death and

inhibiting the growth of normal and neoplastic cells are

showing altered expression in bladder and prostate

cancer. TRP (TRPV1/TRPV2/TRPV6 and TRPM8) proteins

have been shown to be valuable markers in predicting the

progress of bladder and prostate cancers and are now

under consideration as potential targets for chemopre-

vention and chemotherapy [6–8], in anticipation of a

connection between functional and neoplastic diseases.
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