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Educational aims

The reader will come to:

1. Appreciate the spectrum of interstitial lung diseases presenting early in life related to abnormalities of lung development (NEHI,
PIG, alveolar-capillary dysplasia spectrum).

2. Realise that these may not be specific entities, but there are overlap syndromes and associations with extrapulmonary
abnormalities.

3. Understand that these histological patterns are the beginning not the end of the diagnostic journey, and should trigger a search for
underlying in particular genetic abnormalities.
a r t i c l e i n f o a b s t r a c t
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Interstitial lung diseases in children (chILD) are rare and diverse. The current classifications include a
group of early onset chILD specific to infancy, namely neuro-endocrine cell hyperplasia of infancy
(NEHI), pulmonary interstitial glycogenosis (PIG) and the alveolar capillary–congenital acinar dysplasia
(ACD–CAD) spectrum, as well as alveolar growth disorders. NEHI and PIG cells are seen in the normal
developing foetal lung. We hypothesise that these conditions are in fact overlapping manifestations of
pulmonary dysmaturity, respectively of airway, mesenchymal and vascular elements, rather than dis-
crete clinical conditions in their own right. Clinically, these present as respiratory distress in early life.
Mild cases rightly never undergo lung biopsy, and for these the clinical description ‘persistent tachypnoea
of infancy’ has been proposed. In terms of pathology, we reviewed current literature, which showed that
NEHI cells decline with age, and are not specific to NEHI, which we confirmed by unpublished re-analysis
of a second dataset. Furthermore, specific genetic disorders which affect pulmonary maturation lead to a
histological picture indistinguishable from NEHI. PIG and ACD–CAD are also associated with pulmonary
growth disorders, and manifestations of PIG and NEHI may be present in the same child. We conclude
that, contrary to current classifications, NEHI, PIG, and ACD–CAD should be considered as overlapping
manifestations of pulmonary dysmaturation, frequently associated with disorders of alveolar growth,
rather than as separate conditions. Identification of one of these patterns should be the start, not the
end of the diagnostic journey, and underlying in particular genetic causes should be sought.

� 2018 Elsevier Ltd. All rights reserved.
In a landmark report, Deutsch et al. [1] proposed a classification
of children’s interstitial lung disease (chILD) which included disor-
ders of growth and development, and conditions specific to
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Fig. 1. Classical HRCT scan appearances of Neuroendocrine cell hyperplasia of
infancy (NEHI).

2 A. Bush et al. / Paediatric Respiratory Reviews xxx (xxxx) xxx
infancy, namely Neuroendocrine Cell Hyperplasia of Infancy (NEHI)
and pulmonary interstitial glycogenosis (PIG). Subsequent classifi-
cations also accepted these two conditions as specific to infancy
[2–4]. The term NEHI was initially applied to a group of infants
with similar clinical findings (persistent tachypnoea) in whom
the major histological finding was increased numbers of
bombesin-positive neuroendocrine cells. Subsequently, diagnosis
was on imaging findings alone, although these are not 100% spe-
cific. By contrast, PIG had a more diverse presentation but more
specific histological appearances, namely the presence of intersti-
tial glycogen positive cells. Neuroendocrine cells (NEC), are seen
in the normal developing human foetal lung, where they are
thought to induce proliferation of airway epithelial and mesenchy-
mal cells as well as differentiation of alveolar type II cells [5–9] but,
although aggregates of glycogen particles are present during lung
development in type II cells [10–12], they are not normally found
in post-partum pulmonary interstitial cells [10,13,14]. In combina-
tion with other signs of delayed alveolar maturation, the accumu-
lation of glycogen in foetal mesenchymal cells has been thought to
be a disease-reactive process [15]. The actual detailed roles of
bombesin and glycogen positive cells in lung maturation are
unclear, nor is it clear whether they contribute to the pathophysi-
ology of chILD or are merely markers of another process.

The hypothesis underpinning this review is that NEHI and PIG
are part of a spectrum of growth and developmental delay rather
than discrete entities, and this spectrum is characterised by dys-
maturation of one or more compartments of the foetal lung,
namely the foetal airway (bombesin-positive cells), interstitium
(glycogen positive cells), alveolar structure (relative lack of alveo-
lar growth/hypoplasia) and the foetal pulmonary vasculature (per-
sistent pulmonary hypertension of the newborn and the infantile
overlap syndrome of idiopathic pulmonary hypertension; spec-
trum of congenital acinar dysplasia, alveolar capillary dysplasia
and the less well characterised congenital alveolar dysplasia). We
acknowledge that this hypothesis is controversial, and that the evi-
dence is by no means clear. However we suggest that the Identifi-
cation of one of these patterns should be the start, not the end of
the diagnostic journey, and underlying in particular genetic causes
should be sought.
NEHI: DYSMATURATION OF THE FOETAL AIRWAYS?

NEHI is a term which was coined to describe otherwise well
infants with any or all of chronic tachypnoea, retractions, crackles
and hypoxaemia; in lung biopsies haematoxylin and eosin (H&E)
staining was essentially normal, but there was increased staining
for the neuropeptide bombesin in the most distal airway cells
[16–18]. If performed, infant pulmonary function tests show evi-
dence of air trapping [18,19], and airflow obstruction persists into
childhood [20]. High resolution CT (HRCT) appearances in infants
with NEHI have been suggested to be diagnostic, obviating the
need for lung biopsy in the appropriate clinical context [21,22].
Findings include well demarcated geographic ground glass opaci-
ties centrally and in the right middle lobe and lingula (Fig. 1).
Although the specificity of HRCT for the diagnosis of NEHI was sug-
gested to be 100% [22], similar HRCT findings can be found in
infants with different biopsy proven ILD (Fig. 2).

However, new studies cast doubt on the existence of NEHI as a
discrete clinical entity. Large numbers of data points for normal
values of bombesin positive cells, and formal criteria for defining
neuroendocrine cell excess are lacking [23]. NEHI cells were
counted in 73 biopsies from children with a wide range of chILD
[24]. There were seven cases of NEHI, who as expected, had
increased NEHI cells and percentages of airways with NEHI cells.
However bombesin positive cells were also seen in follicular bron-
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chiolitis and surfactant protein disorders to a similar extent, and
similar although less in PIG, non-specific interstitial pneumonia
(NSIP) and children with infections and vascular disease presenting
as chILD. Importantly, considering all biopsies together, the per-
centage of NEHI cells declined with age.

Rauch et al. [25] studied 80 infants with clinically suspected
interstitial lung disease, primarily ground glass changes on HRCT
scanning and the exclusion of surfactant dysfunction disorders
and cardiovascular causes. Cases with characteristic HRCT distribu-
tion of ground glass were called usual persistent tachypnoea of
infancy (PTI), and those with atypical or minor other findings were
called aberrant PTI. There was no difference in clinical outcomes
between usual and aberrant PTI, and, in those who underwent a
lung biopsy, there were more neuroendocrine cells in PTI than con-
trols, with no differences between usual and aberrant PTI. There
were four patients whose biopsies also met the criteria for PIG,
three of whom also had increased bombesin positive cells. They
confirmed that there was an age-dependency of the bombesin pos-
itive cell numbers and airways (Fig. 3).

Other reports challenge the existence of NEHI as a discrete
entity. In an interesting kindred, five patients over two generations
were heterozygous for a missense NKX2.1/TTF-1 mutation in
codon 191 predicting the substitution of leucine for arginine in
the homeodomain which is extensively evolutionary conserved
[26,27]. They presented with respiratory distress and failure to
thrive in infancy, with improvement over time. In those in whom
these investigations were performed, HRCT and lung biopsy
showed the typical appearances of NEHI. Given that NKX2.1/TTF-
1 is a key regulator of multiple steps of lung development and mat-
uration [28,29], we hypothesise that this mutation led to airway
and alveolar developmental delay manifested by prominent persis-
tent bombesin positive cells. Examining the published micro-
graphs, there is possibly additional alveolar maturational delay,
and indeed one adult patient had reduced carbon monoxide trans-
fer at follow up, suggesting alveolar growth may not always have
been normal. The alternative, that two rare diseases coincidentally
co-existed in multiple members of this kindred (NEHI and a purely
pulmonary form of ‘brain-thyroid-lung’ syndrome) is very unlikely,
but cannot be excluded. Finally, the Forkhead box protein P-family
(FOXP) is a transcription factor for normal airway branching and
development [30–32]. Notably, patients with mutation of FOXP1
show exactly the same clinical course and HRCT scans as patients
diagnosed with NEHI [33].

Taken together, these data argue that NEHI is not a discrete con-
dition, but rather, that persisting neuroendocrine positive cells are
interstitial lung diseases: Discrete entities or manifestations of pulmonary
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Fig. 2. Eighteen month old child with HRCT appearances which mimic neuroendocrine cell hyperplasia of infancy but in fact the underlying biopsy proven diagnosis was
desquamative interstitial pneumonia. Whole exome sequencing of the surfactant protein genes revealed no mutations.
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Fig. 3. Age dependency of neuroendocrine cells (NECs) expressed as indicated on
the y-axis based on the numbers obtained in Rauch et al. 2016 [25].
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a marker of airway dysmaturation, which may co-exist with other
maturational lung defects. We suggest that PTI is best used as a
clinical descriptor of these patients [25] if no biopsy is carried
out; and it perfectly describes what is seen. If such patients are
biopsied, and increased numbers of bombesin positive cells are
seen, either isolated or with other abnormalities, this should be
considered as evidence of ‘dysmaturation of the fetal airway’. We
hypothesise that unless and until specific quantitative criteria
which distinguish NEHI from other chILD with distal airway bom-
besin positive cells can be stated, NEHI cannot be described as a
distinct condition. The actual detailed roles of bombesin and glyco-
gen positive cells in lung maturation are unclear, nor is it clear
whether they contribute to the pathophysiology of chILD or are
merely markers of another process entity.
DYSMATURATION OF THE FOETAL MESENCHYME (PIG)

PIG was first described [14] in seven infants who presented
with tachypnoea, respiratory distress and non-specific pulmonary
infiltrates in the first month of life. Light and electron microscopy
confirmed the presence of glycogen granules within spindle
shaped cells which expanded the interstitium. These cells were
vimentin positive but negative for macrophage markers. There
was no pathological extrapulmonary glycogen deposition. Six
infants survived; the seventh died of the complications of bron-
chopulmonary dysplasia and extreme prematurity, but of note,
three other children were born preterm, likely more than would
Please cite this article as: A. Bush, M. Griese, E. Seidl et al., Early onset children’s
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be expected by chance. The authors reviewed over 1000 paediatric
lung biopsies but failed to find any with these characteristic cells,
although techniques of lung tissue preservation and staining may
have contributed to this, and they may occasionally be seen in
otherwise normal biopsies (Deutsch G, personal communication).
Further case reports in term [34–36], late preterm [37,38] and pre-
term identical twins with twin–twin transfusion syndrome [39]
followed. One case was subsequently found to have Hunter’s syn-
drome. Interstitial glycogenosis has been identified in a patient
later diagnosed with the Noonansyndrome [40]. There are no for-
mal quantitative diagnostic criteria for the diagnosis of PIG. Glyco-
gen is normally present in epithelial cells, including Type-II-
pneumocytes, during human lung development. Mesenchymal cell
glycogen may result from epithelial–mesenchymal transition [41].

Subsequent manuscripts have confirmed that PIG cells are
found in multiple other conditions. Nineteen of 46 growth abnor-
malities in the original Deutsch classification [1] had associated
partial PIG, which was much commoner than isolated PIG (n = 6).
Further cases of this association have been described [42]. PIG
has been described [43] in conjunction with abnormal alveolar
development and vasculopathy, congenital heart disease, pul-
monary hypertension, neuroendocrine cell excess, and congenital
lymphatic and parenchymal abnormalities, including congenital
thoracic malformations. In one patient with PIG cells in the setting
of congenital cardiac disease [44], PIG cells had regressed on a sub-
sequent lung biopsy. Langston et al. [3] reported that pulmonary
capillaries are often reduced in number, and that patchy PIG was
common in pulmonary hypoplasia (9/15 cases). Furthermore, the
same abnormality was seen in 12/20 BPD patients undergoing lung
biopsy. Patchy PIG was also seen in 8/16 cases with abnormalities
of lung growth and alveolar acquisition, and 5/16 had pulmonary
hypertension. Patchy PIG was also seen in one infant with Down
syndrome and the typical alveolar growth disorder, and 3/11 biop-
sied for underlying cardiac disease. Overall, 33/77 patients with
pulmonary growth disorders had patchy PIG, and 32 of the 55
infants younger than six months exhibited this combination. Taken
together, this suggests that PIG represents a developmental disor-
der of fibroblast differentiation [43]. Further research has demon-
strated that the cell of origin of glycogen positive cells is the
pulmonary lipofibroblast [44]. In this series of five patients, four
also had alveolar growth disorders, three had pulmonary hyperten-
sion and one lymphangiectasia. Three were late pre-term or early
term deliveries. In a further series, in addition to cases classified
as predominantly PIG, minor features of PIG were seen in three
cases of congenital lobar emphysema as well as being a minor
component in patients with predominant vascular disease and
other interstitial pneumonias [43,45].
interstitial lung diseases: Discrete entities or manifestations of pulmonary
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Fig. 4. HRCT appearances of pulmonary interstitial glycogenosis (PIG). There is
ground glass opacification, consolidation and hyperinflated secondary lobules.
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The radiographic abnormalities are nonspecific and tend to be
dominated by the severity of the lung growth disorder. HRCT
demonstrates variable degree of distortion of the lung architecture
with linear and ground-glass opacities together with hyperinflated
or hyperlucent areas (Fig. 4). This again suggests that PIG is sec-
ondary to an alveolar and vascular maturation disorder. So in sum-
mary, we believe that PIG cells are a marker of dysmaturity of the
foetal mesenchyme, which may be isolated, or associated with
other maturational disorders.
DYSMATURATION OF THE FOETAL PULMONARY VASCULATURE

The foetal pulmonary vascular resistance (PVR) is high, leading
to physiological right to left shunting because the foetal lung has
no gas-exchange function. Reflecting this, there is substantially
more muscularisation of the distal pulmonary arteries and arteri-
oles than in childhood. Furthermore, the greatly reduced numbers
of alveoli in the foetal lung compared to the mature lung con-
tributes to the elevated PVR. At birth, as the lung expands with
the first breaths, PVR normally falls and there is subsequent
remodelling, including regression of distal arterial tree smooth
muscle, and increasing alveolar numbers. The drop in PVR is ini-
tially acutely reversible but the subsequent structural changes
including thinning of the walls of the arterial tree and regression
of distal smooth muscle mean that any subsequent rise in PVR
due to disease is more gradual [46–49]. There are numerous causes
of the acute presentation of pulmonary hypertension in the new-
born period, and many recover with supportive treatment and do
not enter the spectrum of chILD.

The classical primary developmental circulatory conditions
characterised by dysmaturation of the foetal pulmonary vascula-
ture are the spectrum of congenital acinar dysplasia, alveolar cap-
illary dysplasia and the less well characterised congenital alveolar
dysplasia (also sometimes called congenital mesenchymal
dysplasia).
Congenital acinar dysplasia

Congenital acinar dysplasia is a rare, severe condition charac-
terised by a complete lack of alveolar development [50–55]. It is
seen in term or premature babies who are cyanosed at birth and
survive only a few hours. It is usually associated with cardiovascu-
lar anomalies and dermal hypoplasia. The lungs are small and firm.
Microscopically, bronchial-type airways that have cartilage,
Please cite this article as: A. Bush, M. Griese, E. Seidl et al., Early onset children’s
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smooth muscle and glands are separated by abundant mesenchy-
mal tissue. Pulmonary arteries show hypertensive changes.
Alveolar capillary dysplasia

Some cases are caused by known specific single-gene mutations
[56]. The pathological features in the pulmonary circulation
include scarcity of capillaries adjacent to alveolar epithelium, dis-
tended veins within the bronchovascular bundle, and medial thick-
ening of small muscular arteries. The so-called misaligned
pulmonary veins have been shown to be dilated bronchial veins
by detailed morphometric reconstructions [57,58] Although these
may be monogenic disorders, abnormalities are not confined to
the pulmonary circulation, and immature alveolar development
is an associated finding [74,75]. STRA6 mutations and ACD were
associated both with alveolar hypoplasia and pulmonary hyperten-
sion in two kindreds [59]. These conditions, which are likely part of
the same spectrum [60,61], usually present with relentlessly pro-
gressive respiratory failure in term newborns and early death.
Associated congenital abnormalities, including cardiac, gastroin-
testinal, genitourinary, limb and ocular malformations are present
in 80% cases [62,63]. A baby with both a congenital pulmonary air-
way malformation (CPAM) and ACD has been described [64].

However, it is clear that this is a diverse spectrum of conditions.
More than 10% may present late (at several months of age) [65–
69]. More prolonged survival has also been described [70–73], for
example with only patchy disease (which may be missed on lung
biopsy [76]) despite the presence of a heterozygote FOXF1 frame
shift mutation [60]. These children have a clinical, physiological
and radiographic pattern of diffuse parenchymal lung disease, sug-
gesting that dysmaturation is not limited to the vascular tree.

An intriguing report documented an overlap syndrome in two
term infants, who died 2 and 2.5 months of age [77]. Autopsy
showed severe muscularisation of pre-acinar and intra-acinar pul-
monary arteries and the normally non-muscularised precapillary
vessels lying within the alveolar walls; there were some relatively
minor intimal changes. There was some evidence of misalignment
of the pulmonary veins, suggesting these two babies could have
been part of the ACD spectrum. It was suggested that PVR never
normalised after birth, and subsequently rose progressively.

The understanding of PHT in other early onset chILD is difficult.
The potential relationships are complex; (a) PHT may be secondary
to, and a direct consequence of, a reduction in the pulmonary vas-
cular bed in growth or structure disorders; (b) PHT may be sec-
ondary to hypoxia; (c) PHT may actually be disproportionate to
the changes of chILD and/or hypoxia, and be a manifestation of
persistence of the foetal vasculature (generalised or patchy ACD
spectrum). Finally, systemic steroid therapy, which has the benefi-
cial effect of maturing the surfactant system, on the basis of animal
data may contribute to alveolar hypoplasia and thus pulmonary
hypertension [78].
Congenital alveolar (mesenchymal) dysplasia

This term has been used to describe patients where there are
features of PH, lack of alveolar growth and PIG, with no predomi-
nance in any anatomic compartment. Indeed, growth abnormali-
ties are commonly (74%) associated with histological changes of
PHT [1], usually in the setting of prematurity or congenital heart
disease. Histological changes of PHT were found in 74% of patients
with pulmonary growth disorders outside the setting of prematu-
rity, although the extent to which these simply related to hypopla-
sia of the alveolar-capillary bed is unclear. Greatly increased
alveolar size and pulmonary hypertensive changes were associated
with a worse prognosis.
interstitial lung diseases: Discrete entities or manifestations of pulmonary
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Table 1
Additional associations of pulmonary interstitial glycogenosis (PIG).

Gestational age Age at presentation Associated conditions Outcome

Term Birth Severe PHT
Cardiomyopathy

Died age 71 days [85]

Case 1 Term Birth Transposition of the great arteries Arterial switch, discharged well on hospital
day 24 [86]

Case 2 Term 37 days of age PHT (NO treatment)
Left atrial isomerism, DORV, VSD, complex
abnormal venous anatomy
Severe PHT

Surgical correction, discharged oxygen
dependent at hospital day 39

Term Birth Transposition of the great arteries
Severe PHT

Discharged well day 61 of life [87]

Term One month of age Window duct
ASD
Alveolar growth defect with alveolar simplification
Bilateral aniridia

Well age one year [88]

38 + 4 weeks Birth Severe alveolar growth abnormality with alveolar
simplification and enlargement

Out of oxygen and well age 18 months with
residual HRCT changes [42]

34 + 5 weeks Birth Chylothoraces
Noonan’s syndrome
Alveolar growth abnormality

Still oxygen dependent at one year of age [40]

38 weeks Day 1 of life Fetal lung interstitial tumour which contained PIG
cells
Normal surrounding lung

Well aged 15 years [89]

Abbreviations: ASD, atrial septal defect; DORV, double outlet right ventricle; HRCT, high resolution computed tomography; NO, nitric oxide; PHT, pulmonary hypertension;
VSD, ventricular septal defect.
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Aetiology of dysmaturation of the foetal pulmonary vasculature

To what extent dysmaturation of the foetal vasculature compli-
cates other infant chILD is unclear. The case reports of PIG associ-
ated with PHT (Table 1 and above) were largely in babies with
cardiac lesions known to be associated with PHT even in the
absence of PIG. In a recent systematic review of PHT and chILD
[79], pathophysiology could not be determined, although PHT
was associated with a worse prognosis [79]. There were no system-
atic studies to determine the prevalence (if at all) of PHT in the
alveolar growth disorders.

The classical surfactant protein gene mutations (SpB, SpC,
ABCA3) can also be considered a manifestation of failed maturation,
in this case failure to produce normal surfactant protein. These too
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may be associated with alveolar growth disorders [1,4] and even
severe pulmonary hypertension which may have similarities to
ACD [80–82]. So these are other examples of a monogenic disorder
with ramifications outside a single component of the developing
lung.
CONCLUSIONS

Just as elsewhere it has been argued that deconstructing the air-
way is a good way to approach treatment [83], here we advance the
hypothesis that growth and maturational disorders should be
deconstructed into dysregulated development of alveoli, airway,
mesenchyme and pulmonary circulation. This is a controversial
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hypothesis which requires testing. Perhaps these should be called
‘lung dysmaturation syndromes’ if lung tissue is available, specify-
ing which compartment(s) are affected. As with other patterns of
chILD (desquamative interstitial pneumonia, and non-specific
interstitial pneumonia for example), there are likelymultiple differ-
ent underlying genetic and environmental causes. If lung tissue is
not available and the infant is running a relatively benign course
with no evidence of surfactant protein or cardiovascular disorders,
the term ‘persistent tachypnoea of infancy’ should be used [25]. We
suggest that NEHI and PIG part of the ‘lung dysmaturation syn-
dromes’, not discrete entities, dysmaturation of the foetal airway,
and dysregulated development of the foetal mesenchyme respec-
tively. In particular, the description of a clinical scenario or biopsy
as being ‘NEHI’ should be the start of a diagnostic journey to deter-
mine which of many potential genes are the underlying cause. The
vascular compartment remains the most difficult to classify as
changes may be secondary rather than primary, and also may be
minor or the dominant feature. Furthermore, pathology can be lim-
ited to the arteries with no capillaries, have a dearth or absence of
capillary growth or be associated with complete absence of alveolar
structures. We should quantify the extent of disease so as to iden-
tify what is prognostically important and to inform future manage-
ment (Fig. 5). Finally, as in adult ILD, these diseases may be primary
or secondary and in children, specific underlying gene defects
should be sought. Indeed, some patterns, such as CAD, are already
reported as being associated with surfactant protein disorders. In
the future, progress is most likely when specific gene defects are
diagnosed, and specific targeted therapies designed [84].
DIRECTIONS FOR FUTURE RESEARCH

1. Determine the spectrum of genes important in antenatal lung
development, in which mutations may present as interstitial
lung disease.

2. By moving from identification of histological patterns to under-
lying gene mutations, to move from non-specific or no therapies
to specific, targeted molecular treatments for these conditions.
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