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Abstract: Background: The range of pulmonary complications beyond infections in pediatric im-
munocompromised patients is broad but not well characterized. Our goal was to assess the spectrum
of disorders with a focus on interstitial lung diseases (ILD) in immunodeficient patients. Methods:
We reviewed 217 immunocompromised children attending a specialized pneumology service during
a period of 23 years. We assigned molecular diagnoses where possible and categorized the under-
lying immunological conditions into inborn errors of immunity or secondary immunodeficiencies
according to the IUIS and the pulmonary conditions according to the chILD-EU classification system.
Results: Among a wide array of conditions, opportunistic and chronic infections were the most
frequent. ILD had a 40% prevalence. Of these children, 89% had a CT available, and 66% had a
lung biopsy, which supported the diagnosis of ILD in 95% of cases. Histology was often lymphocyte
predominant with the histo-pattern of granulomatous and lymphocytic interstitial lung disease
(GLILD), follicular bronchiolitis or lymphocytic interstitial pneumonitis. Of interest, DIP, PAP and
NSIP were also diagnosed. ILD was detected in several immunological disorders not yet associated
with ILD. Conclusions: Specialized pneumological expertise is necessary to manage the full spectrum
of respiratory complications in pediatric immunocompromised patients.

Keywords: interstitial lung disease; ILD; diffuse parenchymal lung disease; primary immunodefi-
ciency; PID; secondary immunodeficiency; SID; genetic defect

1. Introduction

The lung is a complex parenchymal tissue ensuring proper gas exchange. While
continuously perfused with blood through the capillary network, the large internal sur-
face of the organ is exposed to air-born micro-organisms and many other environmental
factors. A robust immunological balance is necessary to keep this delicate system fully
functioning [1,2]. Host defense and multiple immunological, inflammatory and structural
reactions involve, on the one hand, the airways contacting the outside world and, on the
other hand, the interstitial organ compartment. These defense processes can resolve or
lead to chronic immune cell-shaped specific tissue reactions, including fibrotic tissue repair
processes or organ destruction with respiratory failure [3]. Due to this fragile balance
of immune tolerance and response, it is obvious that the lungs are an important target
organ in immunocompromised patients; pulmonary complications have been shown to
represent the main clinical manifestations of immunodeficiencies and are an important
cause of death [4–6]. Childhood immunodeficiencies are a broad group of rare diseases
either caused by inborn errors of immunity, classified as primary immunodeficiency, or by
hemato-oncologic diseases or immunosuppressive treatments leading to secondary immun-
odeficiency. The recent classification of the primary immunodeficiencies differentiates more
than 400 different molecularly defined entities [7]. Such fine granular classification has
not yet been used to address the frequency and type of different pulmonary complications
in children.

In the past, the focus was predominantly on infectious pulmonary complications.
However, lung disease may clinically not only manifest as airway disease, including
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bronchitis, bronchiectasis, obliterating bronchiolitis (BO) or asthma, but also as diffuse
parenchymal or interstitial lung disease (ILD), including pulmonary hypertension (PHT)
or lymphoproliferative disease (PTLD) [8]. Infrequently, pleural disease or pneumothorax
is observed. Depending on the extent, all conditions may lead to respiratory failure with
diffuse alveolar damage or acute respiratory distress syndrome (ARDS).

As both immunodeficiency and its pulmonary complications are rare, an overview
from a specialized pediatric pneumology unit may be helpful to highlight some useful
perspectives for the immunologist [9–11]. Our goal was to provide details on the clinical
characteristics, including the age of onset, results of broncho-alveolar lavage, lung biopsy,
chest computer tomography (CT), as well as the outcome of pediatric immunocompromised
patients and pulmonary disease. Specifically, we focused on ILD manifestations within
the different entities of immunodeficiency. Our findings indicate a high rate of various
non-infectious complications and provide insight into the management of these patients in
clinical practice.

2. Materials and Methods

We included all immunocompromised children assessed for significant lung disease
between 1997 and 2020 in the Department of Pediatric Pneumology at the Dr. von Hauner
Children’s Hospital of the University of Munich. Clinical information was collected ret-
rospectively from the pneumological clinics’ charts, and patient files were updated for
follow-up information.

Data on gender, age at investigation, consanguinity, family history, gestational age, O2
supplement or mechanical ventilation during the neonatal period, as well as information on
genetic and immunologic diagnostics and lung disease outcome were collected. Imaging
studies were evaluated by pediatric radiologists with long-standing expertise in chest
imaging, especially in pediatric interstitial lung diseases. Flexible bronchoscopy, including
bronchoalveolar lavage (BAL), was performed if clinically indicated using 1 mL warmed
normal saline per kilogram body weight 3 to 4 times [12]. BAL was performed in the
most affected lobe or middle lobe if diffuse and examined for cell differentiation and
microbiologically. In cases where a lung biopsy was obtained, the tissue was investigated
by light microscopy, routine stain (hematoxylin and eosin stain (HE), Elastica van Gieson,
PAS, iron) and bombesin, where indicated [13].

The immunodeficiencies were categorized using the system published by the Inter-
national Union of Immunological Societies (IUIS) for inborn errors of immunity [7]. The
primary immunodeficiencies included combined deficiencies, combined immunodeficien-
cies with syndromic features, antibody deficiencies, immune dysregulation, congenital
defects of phagocyte number or function, defects of intrinsic and innate immunity, autoin-
flammatory syndromes and bone marrow failure. The secondary immunodeficiencies were
due to malignancies or immunosuppressive treatment, including leukemias, lymphoma,
other cancers, and transplantations.

The pulmonary conditions were categorized by the updated etiologic classification
system of the chILD-EU register [14]. Currently, the histopathological description of lung
biopsies helps to categorize and distinguish specific parenchymal reaction patterns domi-
nated by certain cell types or tissue components [15]. These most frequently include non-
specific interstitial pneumonitis (NSIP), lymphoid interstitial pneumonitis (LIP), follicular
bronchiolitis, granulomatous and lymphocytic interstitial lung disease (GLILD), desqua-
mative interstitial pneumonitis (DIP) and alveolar proteinosis (PAP). NSIP histopathology
consists of varying degrees of chronic inflammation and interstitial fibrosis, expanding the
alveolar walls temporally and spatially uniformly and preserving lung architecture. The
inflammation consists of lymphoid cells, mainly CD3-positive T lymphocytes, and small
aggregates of CD20-positive B lymphocytes. The degree of infiltration is less than that
in LIP, although potential overlap is recognized. Follicular bronchiolitis is characterized
by lymphoid follicles around the bronchioles. DIP is characterized pathologically by a
uniform involvement of lung parenchyma with an intra-alveolar accumulation of alveolar
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macrophages. Mild chronic lymphocytic inflammation and mild-moderate interstitial fibro-
sis may be present. PAP is a sometimes patchy intra-alveolar accumulation of amorphous,
PAS-positive granular eosinophilic material that is lipid-rich (surfactant) and can contain
cholesterol clefts and foamy macrophages [15].

3. Results
3.1. Characteristics of the Immunodeficiency Population and Spectrum of Associated Lung Diseases

The local pulmonary database retrieved 228 children, adolescents and young adults
allocated to the disease category immunocompromised (Supplemental Table S1); 217 cases
had sufficient information for review (Figure 1). Overall, more boys than girls were
affected (60% vs. 40%), the majority (90%) of children were born as mature newborns, and
less than 10% had respiratory problems at birth. Disease onset was at a median age of
2 years (Table 1).

Figure 1. Overview of patients included and excluded.

Table 1. Clinical characteristics of patients with immunodeficiency and with ILD or without ILD.

All
Immunodeficiency

Patients

Immunodeficiency
with ILD

Immunodeficiency
without ILD

Comparison
between

with/without ILD
P

Total number 217 90 (41%) 127 (59%)
Sex (male/female) 129 (59%)/88 (41%) 53 (59%)/37 (41%) 76 (60%)/51 (40%) 0.888 *

Age at onset of lung disease in years
(range) 2.0 (0.0–20.1) 2.9 (0.0–15.2) 1.5 (0.0–20.1) 0.116 **

Follow-up duration in years (range) 4.9 (0.0–30.2) 4.9 (0.1–19.4) 4.9 (0.0–30.2) 0.893 **
ILD family history (yes/no) 10 (9%)/97 (91%) 8 (12%)/59 (88%) 2 (5%)/38 (95%) 0.233 *
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Table 1. Cont.

All
Immunodeficiency

Patients

Immunodeficiency
with ILD

Immunodeficiency
without ILD

Comparison between
with/without ILD

P

Consanguinity (yes/no) 27 (25%)/79 (75%) 20 (30%)/46 (70%) 7 (18%)/33 (82%) 0.143 *
Gestational age (range) 40 (29–42) 40 (31–41) 40 (29–42) 0.696 **

O2 supplement in neonatal
period (yes/no) 11/132 6/58 5/74 0.497 *

Mechanical ventilation in
neonatal period (yes/no) 8/135 4/60 4/75 0.759 *

Outcome of lung disease at the
end of follow-up

Sick-better 96 39 57 0.853 *
Sick-same 46 23 23 0.177 *
Sick-worse 32 7 25 0.015 *

Dead 39 19 20 0.299 *

* Chi-square test, ** Mann–Whitney test.

A broad spectrum of lung diseases was identified (Table 2). Opportunistic and chronic
infections were most frequent, occurring across all groups of immunodeficiencies at a rate of
65%. In the 129 BAL samples available from this group, viral, fungal and bacterial infections
occurred. The most common opportunistic infections were caused by Pneumocystis jirovecii
(12%). Cytomegalovirus was the second most common pathogen (5%). Bacteria, including
Viridans streptococci, Streptococcus pneumoniae and Haemophilus influenzae, were also common
causes of infection in this group (4%). Interstitial lung diseases were the second most
common pulmonary complication, occurring at a rate of 40%. Respiratory failure was
identified in more than 25% of the patients. Other less frequent conditions included ARDS,
diffuse alveolar damage, pulmonary hypertension, bronchiolitis obliterans, bronchiectasis,
PTLD, pneumothorax, asthma and pleural disease (Supplemental Table S2).

Comparing primary and secondary immunodeficiencies, the frequency of bronchi-
olitis obliterans was higher in the latter, whereas opportunistic and recurrent infections
were more frequently observed in the group of primary immunodeficiencies. Interest-
ingly, ILD frequency was the same in both groups. Next, we focused on the group of
immunocompromised children with ILD.

3.2. Comparison of Immunodeficient Children with and without ILD

The patients were divided into two groups: (1) those with immunodeficiency and ILD
and (2) those with immunodeficiency without ILD. More than 40% of the immunodeficient
children were diagnosed with ILD. No significant differences in the clinical characteristics
were evident (Table 1), including the cellular composition of broncho-alveolar lavage
(Table 3). The numerically higher percentage of eosinophils in the BAL fluid of patients
with immunodeficiency and ILD might point towards immune dysregulation in those
patients; however, the difference was not statistically significant. Overall, patients had
elevated percentages of neutrophils (normal < 3%) and eosinophils (normal < 0.5%) in their
lavages, independent of the presence of ILD. This differentiation was based on cytology
results, as the immunophenotyping of BAL cells was not regularly conducted.
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Table 2. Immunodeficiency types and associated lung diseases.

Lung Disease; n (% of Immunodeficiency Group)

Immunodeficiency Type
(n)

Interstitial
Lung

Disease

Pulmonary
Hyperten-

sion

Infections
(Opportunis-
tic/Recurrent)

Bronchiolitis
Obliterans Bronchiectasis PTLD Respiratory

Failure ARDS
Diffuse
Alveolar
Damage

Pneumothorax Asthma Pleural
Disease

All immunodeficiencies
(217) 90 (41) 11 (5) 142 (65) 32 (15) 23 (11) 3 (1) 58 (27) 15 (7) 3 (1) 9 (4) 21 (10) 12 (6)

Primary
immunodeficiencies (120) 52 (44) 6 (5) 88 (73) 6 (5) 19 (16) - 31 (26) 9 (8) - 1 (1) 13 (11) 4 (3)

Combined
immunodeficiencies (22) 9 (41) - 18 (82) - 2 (9) - 8 (36) 3(14) - 1 (5) 1 (5) -

Well-defined syndromes
(15) 4 (27) 2 (13) 11 (73) 2 (13) 4 (27) - 1 (7) 2 (13) - - 1 (7) -

Antibody deficiencies (21) 4 (19) 1 (5) 17 (81) 1 (5) 8 (38) - 2 (10) 1 (5) - - 6 (29) -
Immune dysregulation (5) 2 (40) - 3 (60) 1 (20) - - 1 (20) - - - - -
Defects of phagocytes (30) 18 (60) 1 (3) 20 (67) 2 (7) 3 (10) - 10 (33) - - - 3 (10) 2 (7)

Defects of innate
immunity (7) 3 (43) - 6 (86) - 1 (14) - 4 (57) 2 (29) - - - 1 (14)

Autoinflammatory
syndromes (17) 10 (59) 2 (12) 12 (71) - 1 (6) - 4 (24) 1 (6) - - 2 (12) 1 (6)

Bone marrow failure (3) 2 (67) - 1 (33) - - - 1 (33) - - - - -
Secondary

immunodeficiencies (97) 38 (39) 5 (5) 54 (56) 26 (27) 4 (4) 3 (3) 27 (28) 6 (6) 3 (3) 8 (8) 8 (8) 8 (8)

ALL (15) 4 (27) - 11 (73) 1 (7) 1 (7) 10(7) 5 (33) 1 (7) - - 1 (7) 1 (7)
AML (10) 3 (30) - 6 (60) 1 (10) - - 3 (30) - 1 (10) - - 1 (10)

Cancer, other (10) 4 (40) - 4 (40) 1 (10) - - - 1 (10) - 1 (10) 1 (10) -
CLL (2) 1 (50) - 1 (50) - - - - - - - 1 (50) 1 (50)
CML (1) - - - - - - 1 (100) - - - - 1 (100)
HIV (2) 1 (50) - 1 (50) - - - - - - - - -

Hodgkin lymphoma (3) - - 2 (67) - - - - - - - 1 (33) -
JMML (3) 2 (66) 1 (33) 2 (67) 1 (33) - - 1 (33) 1 (33) - - - -
MDS (5) 4 (80) 1 (20) 2 (40) 1 (20) - - 2 (40) - - 1 (20) 2 (40) 1 (20)

Non-Hodgkin lymphoma
(1) - - 1 (100) - - - - - - - - -

Other therap.
intervention (1) - - 1 (100) - - - - - - - - -

Transplant-heart (3) 2 (67) - 2 (67) - - 1 (33) - - - - - 1 (33)
Transplant-heart and lung

(6) 3 (50) 3 (50) 2 (33) 2 (33) - - 2 (33) - 1 (17) - - -

Transplant-kidney (1) - - 1 (100) - - - 1 (100) - - - - -
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Table 2. Cont.

Lung Disease; n (% of Immunodeficiency Group)

Immunodeficiency
Type (n)

Interstitial
Lung

Disease

Pulmonary
Hyperten-

sion

Infections
(Opportunis-
tic/Recurrent)

Bronchiolitis
Obliterans Bronchiectasis PTLD Respiratory

Failure ARDS
Diffuse
Alveolar
Damage

Pneumothorax Asthma Pleural
Disease

Transplant-lung (4) 1 (25) - 3 (75) 1 (25) 1 (25) 1 (25) 2 (50) - - 1 (25) - -
Transplant-stem cell

(30) 14 (47) - 15 (50) 18 (60) 2 (7) 1(3) 10 (33) 3 (10) 1 (3) 5 (17) 2 (7) 2 (7)
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Table 3. Features of ILDs in immunodeficient children.

All Immunodeficiency
Patients

Immunodeficiency
with ILD

Immunodeficiency
without ILD

Comparison
between

with/without ILD
P *

Cell concentration (/µL) 405.3 ± 1209.4 (114) 343.5 ± 308.1 (28) 425.4 ± 1383.0 (86) 0.216
Macrophages (%) 60.1 ± 27.9 (138) 64.7 ± 23.6 (46) 57.8 ± 29.6 (92) 0.299

PMN (%) 19.4 ± 25.9 (138) 16.3 ± 19.2 (46) 21.0 ± 28.7 (92) 0.626
Lymphocytes (%) 16.2 ± 17.0 (138) 13.5 ± 14.0 (46) 17.5 ± 18.2 (92) 0.437
Eosinophils (%) 2.1 ± 6.6 (138) 4.0 ± 10.5 (46) 1.2 ± 2.9 (92) 0.101
Mast cells (%) 0.2 ± 1.0 (138) 0.2 ± 0.8 (46) 0.3 ± 1.2 (92) 0.995

Plasma cells (%) 0.04 ± 0.3 (138) 0.03 ± 0.1 (46) 0.05 ± 0.4 (92) 0.388
Cell viability (%) 79.0 ± 23.0 (105) 80.4 ± 25.9 (23) 78.5 ± 22.2 (82) 0.283

Cell recovery (/µL) 53.0 ± 24.2 (107) 50.7 ± 28.5 (30) 53.9 ± 22.5 (77) 0.539 **

Data are means ± SD (n); * Mann–Whitney test, except “Cell recovery”, which was assessed with ** t-test.

3.3. Features of ILDs in Immunodeficient Children

Within the group of patients who had developed an ILD, those with primary im-
munodeficiency more frequently had a family history of ILD and consanguinity (Table 4),
pointing towards a potential genetic predisposition and risk factors for ILD. Gender dis-
tribution, age at disease onset, neonatal history and outcome of lung disease were not
different when comparing primary and secondary immunodeficiency.

In 90% of the children with ILD, a CT scan was performed, and in 80% of the studies,
the features were consistent with an ILD (Table 5). Two-thirds of all children with ILD had
a lung biopsy, which supported the diagnosis of ILD in 95% of cases. There were three ILD
cases not supported by lung biopsy. Histopathological diagnosis in these patients included
a normal transplanted lung, chronic bronchitis and a DAD with bronchiolitis obliterans. If
genetic testing was performed, a monogenic condition known to be associated with ILD
was identified in 76% of the patients. In more than two-thirds of the cases, the diagnosis of
ILD was supported by two or three different diagnostic tests (Table 5).

Table 4. History, neonatal period and long-term course of patients with ILD and underlying immunodeficiency.

Sex
(m/f)

ILD
Family
History

(y/n)

Consanguinity
(y/n)

Age at Onset of
Lung Disease

(Years)

Gestational
Age (Week)

O2 Supplement in
Neonatal Period

(y/n)

Mechanical
Ventilation in
Neonatal Pe-

riod (y/n)

Follow-Up
Duration

(Years)

Outcome of Lung Disease

Sick-
Better

Sick-
Same

Sick-
Worse Dead

All types of
immunodeficiency 53/37 8/59 20/46 4.4 ± 4.4 31–41 (40) 6/58 4/60 6.0 ± 5.2 39 23 7 19

Primary
immunodeficiency 28/24 8/38 18/28 3.5 ± 4.2 31–41 (40) 4/38 2/40 6.8 ± 5.8 22 15 4 10

Combined
immunodeficiencies 8/1 0/6 3/4 1.4 ± 3.2 34–41 (40) 0/8 0/8 2.4 ± 1.7 6 2 0 1

Well-defined syndromes 3/1 0/3 1/2 6.1 ± 5.5 37–40 (40) 1/1 1/1 3.6 ± 4.0 1 1 1 1
Antibody deficiencies 2/2 0/4 0/4 5.2 ± 6.9 37–40 (38) 0/4 0/4 6.3 ± 4.2 3 1 0 0

Immune dysregulation 2/0 0/2 0/2 2.7 ± 2.8 39–40 (40) 1/1 0/2 4.4 ± 3.8 1 0 1 0
Defects of phagocytes 4/14 3/13 9/6 4.5 ± 3.9 31–41 (40) 0/12 0/12 8.9 ± 5.2 8 5 2 2

Defects of innate
immunity 2/1 2/1 3/0 0.6 ± 0.2 40 (40) 1/2 1/2 5.2 ± 8.1 0 0 0 3

Autoinflammatory
syndromes 5/5 3/7 2/8 2.5 ± 2.8 34–40 (40) 1/8 0/9 9.4 ± 7.3 3 5 0 2

Bone marrow failure 2/0 0/2 0/2 7.7 ± 9.5 40 (40) 0/2 0/2 3.6 ± 4.0 0 1 .0 1
Secondary

immunodeficiency 25/13 0/21 2/18 5.5 ± 4.4 32–40 (40) 2/20 2/20 5.0 ± 4.3 17 8 3 9

Comparisons between
primary and secondary

immunodeficiency

0.255
* 0.042 * 0.018 * 0.612 ** 0.901 ** 1.0 * 0.603 * 0.445 ** 0.217 * 0.412 * 1.000 * 0.596

Data are numbers or means ± SD. Comparisons were made between primary and secondary immunodeficiency
by * chi-square tests, ** ANOVA.
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Table 5. ILD diagnosis supported by the results of the diagnostic tests used in the cohort of 90 patients
with immunodeficiency.

Numbers; %

Chest CT completed (yes/nk; % yes of all patients) 80/10; 89
ILD consistent with CT diagnosis (yes/no; % yes of patients with this test) 64/16; 80
Lung biopsy completed (yes/nk; % yes of all patients) 59/31; 66
Lung biopsy diagnosis proving ILD (yes/no; % yes of patients with this test) 56/3; 95
Genetic testing completed (yes/nk; % yes of all patients) 44/46; 49
Gene identified known to be associated with ILD (yes/no; % yes of patients
with this test) 34/10; 76

ILD supported by genetics and lung biopsy (yes/no; % yes of patients with
these tests) 21/28; 75

ILD supported by genetics and CT (yes/no; % yes of patients with these
tests) 26/38; 68

ILD supported by lung biopsy and CT (yes/no; % yes of patients with these
tests) 43/56; 77

ILD supported by genetics, biopsy and CT (yes/no; % yes of patients with
these tests) 18/26; 69

ILD diagnosis only according to clinical records 3/87; 3
nk = not known or not available.

The spectrum of histopathological ILD patterns in the lung biopsies of the immunode-
ficient patients was broad. Typical lymphocyte-dominated conditions were most prevalent
and included GLILD, follicular bronchiolitis, LIP and NSIP, and constituted a total of 41% of
all biopsies (Table 6). Other histological patterns included cholesterol pneumonia, DIP, PAP,
lung fibrosis and pulmonary hemosiderosis, among others. Lung fibrosis was indicated in
13 patients, 3 of whom suffered from primary and 10 from secondary immunodeficiency
(data not shown).

Table 6. Histopathological ILD diagnosis observed in 56 patients with immunodeficiencies and a
lung biopsy.

Immunodeficiency (n, Percentage of
Histopathological ILD Diagnosis in
Immunodeficiency Subcategories)

Gender (Male/Female) Histopathological Diagnosis and Pattern (n)

Primary immunodeficiency (32, 27%)

Combined deficiencies (5) 4/1
NSIP (1), GLILD (1), Interstitial pneumonia (1),

Intra-alveolar haemorrhage (1), Follicular
bronchiolitis (1)

Well-defined syndromes (2) 2/0 Interstitial pneumonia (1), CPI (1)

Antibody deficiencies (2) 2/0 GLILD (1), Interstitial pneumonia (1)

Immune dysregulation (2) 2/0 LIP (2)

Defects of phagocytes (11) 1/10 Cholesterol pneumonia (1), DIP (2), PAP (7),
Interstitial pneumonia (1)

Autoinflammatory syndromes (8) 4/4
LIP (1), Follicular bronchiolitis (1), NSIP (2),
Interstitial pneumonia (1), DIP (1), PAP (1),

Lung hypoplasia (1)

Bone marrow failure (2) 2/0 NSIP (1), Lung fibrosis (1)

Secondary immunodeficiency (24, 25%)

ALL (3) 2/1 GLILD (1), NSIP (1), Follicular bronchiolitis (1)
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Table 6. Cont.

Immunodeficiency (n, Percentage of
Histopathological ILD Diagnosis in
Immunodeficiency Subcategories)

Gender (Male/Female) Histopathological Diagnosis and Pattern (n)

AML (1) 1/0 PAP (1)

Cancer (2) 2/0 BPD (1), DIP (1)

JMML (2) 2/0 Follicular bronchiolitis (1), Pulmonary
hemosiderosis (1)

MDS (2) 2/0 Lung fibrosis (1), NSIP (1)

Transplanted (14) 9/5 LIP (1), DIP + NSIP (1), DAD (1), Lung fibrosis
(4), Cholesterol pneumonia (2), NSIP (5)

3.4. ILD in Genetically Defined Primary Immunodeficiency: Experience from a Single Pediatric
Pneumology Center and Review of Literature

The frequency of ILD observed in patients with immunodeficiency and genetically
identified causes observed in our cohort is depicted in Table 7. For comparison, we per-
formed a literature review of genetically determined immunodeficiency conditions present
in our cohort and extracted the associated pulmonary conditions (Table 7). Whereas oppor-
tunistic infections were the most frequently reported, ILD was prevalent in multiple but not
all disorders. In 18 out of 25 conditions, we did not observe ILD involvement of the lungs in
agreement with the literature, whereas, in 7 conditions, we observed an ILD. These diseases
were caused by genetic variants in CD40, 10p13-p14DS, HELLS, TNFRSF13B, CYBA and
NCF2. The patients in this group presented with an ILD-typical phenotype; however,
susceptibility to opportunistic pathogens, including Cytomegalovirus, Pneumocystis jirovecii
and Aspergillus, was coincidental, suggesting a possible role of microorganisms in the
resulting lung disease. Of note, all these conditions were mainly described in single case
reports or small series, increasing the likelihood that ILD manifestations might have been
missed previously.

Table 7. Comparison between our cohort and literature regarding the percentage of the presence of
ILD in genetically defined primary immunodeficiency.

Immunodeficiency
Subcategories
(Number of

Patients with
ILD/Number of

Patients with
Genetically

Defined Immun-
odeficiency)

Disease
Genetically
Defined in
Our Cohort

(No.)

No. of Cases
with ILD in
Our Cohort

(ILD
Percentage)

Pulmonary Diseases
Other than ILD (n)

Prevalence of ILD (%) in
Primary Immunodeficiency

Genetic Defect, as Reported in
the Literature (May 1999 to

May 2022)

Gene
Identified,

Known to Be
Associated

with a
Condition
Presenting

with an ILD

Combined
deficiencies (4/8) ADA (2) 1 (50%)

ARDS, Respiratory
failure, Opportunis-

tic/recurrent
infections (1)

44% [16] ** Y

CD40 (2) 2 (100%) 0% [17] **, [18] * N

CD40LG (1) 0 (0%) Opportunistic/recurrent
infections (1) 20% [19] ***, 0% [20] *** N

IL2RG (1) 1 (100%) 7% ILD [21] *** Y

DOCK8 (1) 0 (0%)
Bronchiolitis

obliterans,
Bronchiectasis (1)

0% [22] ***, [23] *** N
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Table 7. Cont.

Immunodeficiency
Subcategories
(Number of

Patients with
ILD/Number of

Patients with
Genetically

Defined Immun-
odeficiency)

Disease
Genetically
Defined in
Our Cohort

(No.)

No. of Cases
with ILD in
Our Cohort

(ILD
Percentage)

Pulmonary Diseases
Other than ILD (n)

Prevalence of ILD (%) in
Primary Immunodeficiency

Genetic Defect, as Reported in
the Literature (May 1999 to

May 2022)

Gene
Identified,

Known to Be
Associated

with a
Condition
Presenting

with an ILD

RFXAP (1) 0 (0%) Opportunistic/recurrent
infections (1) 50% [24] * Y

Well-defined
syndromes

(4/14)
ATM (3) 1 (33%)

Bronchiectasis,
Pulmonary

hypertension (1),
Bronchiectasis, Oppor-

tunistic/recurrent
infections (1)

50% [25] *, 26% [26] ***, 14%
[27] *** Y

10p13-p14DS
(1) 1 (100%) 0% [28] ***, [29] * N

MCM4 (1) 1 (100%) 50% [30] **, 0% [31] ** Y

DNMT3B (1) 0 (0%) Opportunistic/recurrent
infections (1) 0% [32] *** N

IKBA (1) 0 (0%) Opportunistic/recurrent
infections (1) 0% [33] *, [34] ** N

NBS1 (1) 0 (0%)
Bronchiectasis, Oppor-

tunistic/recurrent
infections (1)

0% [35] *. [36] *, [37] *** N

TTC7A (1) 0 (0%) Opportunistic/recurrent
infections (1) 0% [38] *, [39] *, [40] *** N

DiGeorge (4) 0 (0%)

Opportunistic/recurrent
infections (2), Asthma,

Pulmonary
hypertension (1), Op-
portunistic/recurrent
infections, ADRS (1)

0% [41] ***, 100% [42] * Y

HELLS (1) 1 (100%) 0% [43] **,
[44] * N

Antibody
deficiencies (1/4)

TNFRSF13B
(1) 1 (100%) 0% [45] **, [46] * N

BTK (1) 0 (0%)
Opportunistic/recurrent
infections, Respiratory

failure (1)
0% [47] *, [48] *** N

NFKB1 (1) 0 (0%) Opportunistic/recurrent
infections, ARDS (1) 12% [49] ***, 0% [50] ** Y

PIK3CD (1) 0 (0%)
Bronchiectasis, Oppor-

tunistic/recurrent
infections (1)

0% [51] **, [52] ** N

Immune
dysregulation

(2/5)
FOXP3 (2) 1 (50%)

Bronchiolitis
obliterans, Respiratory

failure (1)
23% [53] ***, Y

STAT3 GOF
(1) 1 (100%) 36% [54] ***, 100% [55] * Y

IL10 (1) 0 (0%) Opportunistic/recurrent
infections (1) 0% [56] **, [57] *** N

UNC13D (1) 0 (0%) Opportunistic/recurrent
infections (1) 0% [58] **, [59] * N



Diagnostics 2023, 13, 64 11 of 20

Table 7. Cont.

Immunodeficiency
Subcategories
(Number of

Patients with
ILD/Number of

Patients with
Genetically

Defined Immun-
odeficiency)

Disease
Genetically
Defined in
Our Cohort

(No.)

No. of Cases
with ILD in
Our Cohort

(ILD
Percentage)

Pulmonary Diseases
Other than ILD (n)

Prevalence of ILD (%) in
Primary Immunodeficiency

Genetic Defect, as Reported in
the Literature (May 1999 to

May 2022)

Gene
Identified,

Known to Be
Associated

with a
Condition
Presenting

with an ILD

Defects of
phagocytes

(18/21)
CSF2RA (15) 15 (100%) 100% [60] **, [61] *** Y

CYBA (3) 2 (67%)

Bronchiolitis
obliterans, Opportunis-

tic/recurrent
infections, Asthma (1)

0% [62] **, [63] *, [64] ***, [65] *** N

CYBB (1) 0 (0%) Opportunistic/recurrent
infections (1)

0% [62] ***, [63] ***, [64] ***, [65]
*** N

NCF4 (1) 0 (0%) Bronchiectasis (1) 0% [65]* N
NCF2 (1) 1 (100%) 0% [62] **, [63] *, [64] ***, [65] *** N

Defects of innate
immunity (3/7)

MDA5 def
(LOF). IFIH1

(1)
0 (0%) Respiratory failure (1) 0% [66] *, 100% [67] * Y

STAT1 (AD
LOF) (1) 0 (0%)

Bronchiectasis, Oppor-
tunistic/recurrent

infections (1)
5% [68] *** Y

TCIRG1 (1) 0 (0%) Opportunistic/recurrent
infections (1) 0% [69]*** N

ZNFX-1 (4) 3 (75%) Opportunistic/recurrent
infections (1) 13% [70] **, 50% [71] * Y

Autoinflammatory
syndromes

(10/16)
COPA (7) 7 (100%) 100% [72] ***, [73] *** Y

OAS1 (1) 1 (100%) 100% [74] **, [75] * Y
PLCG2 (1) 1 (100%) 0% [76] **, [77] *, [78] *** N
STING (1) 1 (100%) 100% [79] ***, 85% [80] ** Y

AGS7.IFIH1
(1) 0 (0%)

Opportunistic/recurrent
infections, Respiratory

failure, ARDS (1)
0% [81] *, [82] *, [83] ** N

MEFV (2) 0 (0%) Opportunistic/recurrent
infections (2) 0% [84] ***, [85] ***, [86] *** N

TMEM173 (1) 0 (0%) Opportunistic/recurrent
infections (1) 100% [79] ***, 85% [80] ** Y

TNFRSF1A
(2) 0 (0%)

Asthma (1), Oppor-
tunistic/recurrent

infections (1)
0% [87] *** N

Bone marrow
failure (2/3) SAMD9 (1) 0 (0%)

Opportunistic/recurrent
infections, Respiratory

failure (1)
0% [88] **, [89] ** N

TERC (1) 1 (100%) 50% [90] * Y
TERT (1) 1 (100%) 16% [90] ***, 56% [91] ** Y

* Case reports on 1 to 5 patients, ** Cohorts with 6 to 20 patients, *** Cohorts with more than 20 patients.

4. Discussion

Our data on lung diseases in immunodeficiencies confirmed that opportunistic and
recurrent infectious diseases are still among the most prevalent pulmonary complications
in an immunocompromised host; however, the data clearly demonstrate that formerly less
frequently diagnosed conditions need to be considered carefully in clinical practice. This
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is particularly true for ILDs during childhood, which were identified in more than 40%
of all patients. Of great interest and importance is an accurate etiological differentiation
of the ILDs, as they represent an extremely broad spectrum of various disorders. Of note,
many other but less frequent pneumological disorders, including bronchiolitis obliterans
and pulmonary hypertension, must also be differentiated.

There are several lessons to be learned from our study. (1) Respiratory complications
in primary and secondary immunodeficiencies are important problems and need to be
carefully addressed by clinicians; (2) the spectrum of pulmonary differential diagnosis
beyond infectious complications is broad, including various forms of ILDs; (3) GLILD is
a useful umbrella term alerting for ILD, but in immunodeficiencies, there are also other
ILDs than GLILD; (4) traditional histopathological analysis can give important clues not
only for differential treatments but also supporting advanced diagnostic multi-omics in
the near future; (5) the limitation of cross-sectional analysis needs to be overcome by
longitudinal studies, e.g., in registries to assess the course and stages of molecular entities
with the help of CT imaging, lung function testing and deep clinical follow-up; and
(6) importantly, close collaboration between immunologists and pulmonologists and other
involved subspecialties will likely make an important difference.

Overall, 18% of the patients included died, and 15% became worse during the observa-
tion time. Even treatment patients with immunodeficiency still suffered from high rates of
pulmonary infections (primary immunodeficiency 73%, secondary immunodeficiency 56%)
or non-infectious chronic lung disease. While respiratory diseases started at a median age
of about 2 years (range 0 to 20), neonatal respiratory disease was not a risk factor for later
lung affection. Beyond suppurative infectious lung disease, various kinds of obstructive
lung diseases, including bronchiolitis obliterans, spontaneous and recurrent pneumothorax,
acute respiratory distress syndrome (ARDS), acute and chronic respiratory insufficiency,
partial and global respiratory failure, and diffuse alveolar damage (DAD), were noted (see
Table 2, Supplemental Table S2). Less frequent conditions to differentiate diagnostically in
the wide spectrum of pulmonary affections were PTLD, subpleural and pleural fibrosis,
pleurisy, pleural effusion, pleural empyema, pulmonary hypertension, portopulmonary
hypertension, stenosis of the pulmonary artery, and pronounced obliterative vasculopathy.

For the pneumologist, ILD may be the presenting condition, and the underlying
immunodeficiency is not yet diagnosed [92]. Several of the ILDs we identified in our
sample are not typically expected in immunodeficiency, i.e., conditions not linked to
GLILD. Such conditions included restrictive lung diseases such as cholesterol pneumonia,
DIP, pulmonary hemosiderosis, pulmonary hemorrhage, bronchopulmonary dysplasia,
PAP or NSIP. None of these histological patterns corresponded to a single disease entity. As
an example, the NSIP pattern was found in connective tissue diseases, drug-induced ILD,
hypersensitivity pneumonitis, HIV infection, chronic infection, chronic aspiration, previous
acute lung injury and idiopathic NSIP [15].

All of these conditions are rare, and making such a diagnosis or not may contribute to
the wide variation of ILD frequencies reported in several case series of immunocom-
promised children. While a recent pediatric study reported a very low rate of ILD,
e.g., 1% (11/796 cases [93]), all other reports indicate higher rates (64% (39/61 pediatric
and adult cases [94]), 15% [95], 34% [96], 26% (18/69 cases [97]), 11% (3/28 cases), 7%
(46/637 cases [98]), 15% (8/54 cases [99]), 13% (78/623 cases [100]), 30% (24/80 [101]), 11%
(40/370 cases [102]), 8% (6/73 cases [103]), 7% (114/1647 cases [104]), 10% (22/219 cases [105]),
40% (29/73 [106], 18% (9/50 cases [107]), 9% (138/1518 cases [108]), 22% (16/73 cases [109]),
20% (29/148 cases [110]), and 12% (4/33 cases [111]). It is clear that such differences result
from selection bias due to differences in criteria for diagnosis, different age groups investi-
gated, variable underlying diseases or selection bias from the researcher’s perspective and
interest, i.e., observing primarily from an immunological or pneumological viewpoint, and
also knowledge about the conditions and the existence of such complications. More exact
estimates could be collected in population-based prospective studies using appropriate
inclusion and exclusion criteria and case definitions.
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In our cohort, lung biopsies were conducted at a relatively high frequency in 66% of
the ILD patients. This was most likely due to a highly selected cohort of subjects with
significant pulmonary problems, presenting after various diagnostic efforts and empirical
therapeutic trials had been made. The biopsies led to an ILD diagnosis in 95% of the
cases. A precise diagnosis may also be important for novel treatments, e.g., the presence
of fibrosis in a biopsy may support treatment with anti-fibrotic drugs such as nintedanib
or pirfenidone.

Hurst et al., 2017 generated a consensus statement for CVID, introducing GLILD
defined as a “distinct clinico-radio-pathological ILD occurring in patients with CVID, as-
sociated with a lymphocytic infiltrate and/or granuloma in the lung, and in whom other
conditions have been considered and where possible excluded” [112]. As the authors
pointed out later, there is still complex terminology for ILD in CVID and no consensus [113].
We believe that GLILD may be a useful umbrella term alerting for ILD in immunodeficien-
cies. Using the category of GLILD as a practical approach for currently available treatments
also appears appropriate, as the ILD associated with immunodeficiencies often represents
some form of benign lymphoproliferative pathology, and the ILD may simply be a manifes-
tation of some immune dysregulation [112,114]. However, the traditional histopathological
analysis as conducted here can give important additional diagnostic clues and, in the near
future, may also support advanced diagnostic tissue-based multi-omics [115].

Chest CTs were performed in about 89% of the subjects, and 80% of these were
consistent with an ILD. CT is a sensitive technique to detect ILD. This was further supported
by a high rate of concordance with radiological findings and the results of lung biopsies.
Histopathological examination confirmed a suspected ILD in 95% of cases. However,
CTs cannot differentiate the type of ILD; thus, lung biopsies do not always appear to be
redundant. On CT imaging, interstitial thickening, pulmonary fibrosis, pleuropulmonary
elastosis or pleuroparenchymal fibroelastosis were the most common findings.

An important strength of this study was the use of the advanced contemporary
classification system for inborn errors of immunity, which focuses on distinct genetic
disease categories. In our study, 49% of the patients with primary immunodeficiency had
an underlying monogenic defect supporting their diagnosis. For seven conditions, we
provided new evidence for ILD pulmonary manifestations. Another strength includes the
collection of rare and clinically significant conditions, i.e., about 10 new cases annually
over a period of more than 2 decades. However, this study was a cross-sectional analysis,
and precise follow-up was lacking. Other limitations include its retrospective, single-
center design and a selection of more severely affected patients submitted to our pediatric
pneumology department. Longitudinal studies, e.g., in registries following the course of
well-defined molecular entities, may use pre-structured CT imaging, lung function testing
and deep clinical follow-up to overcome such shortcomings. Lastly, close collaboration
between all involved subspecialties will likely make an important difference in unraveling
the details of lung targeting in immunodeficiencies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics13010064/s1, Table S1: Immunodeficiency groups
and diagnosis; Table S2: Definition of final lung diseases diagnosis.
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Abbreviations

AD Autosomal dominant transmission
ADA Adenosine deaminase
AGS7 Aicardi–Goutières syndrome 7
ALL Acute lymphocytic leukemia
AML Acute myeloid leukemia
APLAID Auto-inflammation and phospholipase Cγ2 (PLCγ2)-associated

antibody deficiency and immune dysregulation
AR Autosomal recessive transmission
ATM Ataxia Telangiectasia, Mutated
BO Bronchiolitis obliterans
CD Cluster of differentiation
CD40LG CD40 Ligand
CGD Chronic granulomatous disease
CID Combined immunodeficiencies
CLL Chronic lymphocytic leukemia
CML Chronic myelogenous leukemia
CVID Common variable immunodeficiency
CYBA Cytochrome B-245 Alpha Chain
CYBB Cytochrome b-245 beta chain
def deficiency
DKC Dyskeratosis congenita
DNMT3B DNA methyltransferase 3b
EDA Anhidrotic ectodermodysplasia
FOXP3 Forkhead box protein P3
GOF Gain-of-function
HIV Human immunodeficiency virus
ICF Immunodeficiency, Centromeric region instability, Facial anomalies syndrome
ID Immunodeficiency
Ig Immunoglobulin
IKBA Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha
IL Interleukin
IL2RG Interleukin 2 Receptor Subunit Gamma
ILD Interstitial lung disease
IPEX Immune dysregulation, polyendocrinopathy, enteropathy X-linked
JMML Juvenile myelomonocytic leukemia
LOF Loss-of-function
MCM4 Minichromosome maintenance
MDA Melanoma differentiation-associated protein
MHC Major histocompatibility complex
MIRAGE Myelodysplasia, infection, restriction of growth, adrenal hypoplasia,

genital phenotypes, enteropathy
NBS Nijmegen breakage syndrome
NCF Neutrophil cytosolic factor
NFKB1 Nuclear factor-kappaB1
PAP Pulmonary alveolar proteinosis
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PAS Periodic acid–Schiff
PHT Pulmonary hypertension
PIK3CD Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Delta
PLAID PLCγ2 associated antibody deficiency and immune dysregulation
PLCG2 phospholipase C gamma 2
RF Respiratory failure
RFXAP Regulatory Factor X-Associated Protein
SAMD9 Sterile Alpha Motif Domain Containing 9
SCID Severe combined immunodeficiency
SID Secondary Immunodeficiency
STAT Signal transducer and activator of transcription
TACI Transmembrane activator calcium modulator and cyclophilin ligand interactor
TERC Telomerase RNA Component
TERT Telomerase Reverse Transcriptase
TNFRSF13B Tumor Necrosis Factor Receptor Superfamily Member 13B
TNFRSF1A TNF Receptor Superfamily Member 1A
TRAPS TNF receptor-associated periodic syndrome
TTC7A Tetratricopeptide repeat domain 7A gene
UNC13D Protein unc-13 homolog D
ZNFX-1 NFX1-type zinc finger-containing 1
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